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1. INTRODUCTION

In their classical review, Wang and Uhlenbeck(1) posed the problem of
finding the distribution of the first-passage times to the origin of a particle
freely diffusing in phase space. The dynamics of such a particle can be
described by the stochastic Langevin equation or equivalently by the
Kramers-Klein equation'2' equation for the joint position and velocity
distribution function, P(x, v, /). In coordinate space, where the dynamics is
described by the ordinary diffusion (parabolic) equation, this problem is
simply solved. In phase space, this problem is considerably more difficult

1 Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney
Diseases, National Institutes of Health, Bethesda, Maryland 20892; e-mail: bicout@speck.
niddk.nih.gov.

1047

0022-4715/98/0600-1047S1S.OO/0 © 1998 Plenum Publishing Corporation

KEY WORDS: First passage times; persistent random walk; Kramers
equation.

The arguably simplest model for dynamics in phase space is the one where the
velocity can jump between only two discrete values, + v, with rate constant k.
For this model, which is the continuous-space version of a persistent random
walk, analytic expressions are found for the first passage time distributions to
the origin. Since the evolution equation of this model can be regarded as the
two-state finite-difference approximation in velocity space of the Kramers-Klein
equation, this work constitutes a solution of the simplest version of the
Wang-Uhlenbeck problem. Formal solution (in Laplace space) of generaliza-
tions where the velocity can assume an arbitrary number of discrete states that
mimic the Maxwell distribution is also provided.
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not only because of the two dimensionality of the evolution (elliptic) equa-
tion but also due to the nature of the absorbing boundary condition at the
origin which involves only particles moving with the appropriate velocity
[i.e., P(0, v, t) = 0 for v > 0 when the initial position is x0 > 0]. It took over
forty years before Marshall and Watson,(3) using sophisticated techniques,
were able to derive an expression for the Laplace transform of the first-
passage-time distribution. Their expression, which involves coefficients that
could only be obtained by a limiting procedure, is so complicated that it
is unlikely that it can be inverted into the time domain.

In this paper we consider the Wang-Uhlenbeck problem in the dis-
crete velocity space. When the velocity can assume only two values, all the
essential features of the original problem are retained, yet the first-passage-
time distribution can be analytically found in the time domain. Consider a
particle moving in one dimension whose velocity stochastically fluctuates
between just two values, ± v. The interconversion between the " +" and

k
" —" velocity states is described by the kinetic scheme — v ̂  v, where k is
the transition rate constant [i.e., a Poisson process]. The evolution equa-
tion [see below] of this problem is two dimensional [continuous in space
but discrete in velocity] and can be regarded as the simplest finite dif-
ference approximation [for the velocity] of the Kramers-Klein equation.'2'
It also describes the continuous space analogue of a persistent random
walk introduced by Taylor(4) in an attempt to treat turbulent diffusion. As
shown by Goldstein,(5) it is equivalent to the telegrapher's equation which
governs the flow of electricity in cables. Masoliver et al.(6} studied the
solutions of the telegrapher's equation subject to a variety of boundary
conditions [including absorbing]. They focused primarily on the velocity
averaged conditional probability density for finding the system at a given
position and did not explicitly consider the dependence of the survival
probability on the initial velocity.

For the above model, the probability densities, P±(x, t) that the
particle is at x at time / with velocity ±v satisfy:

The average velocity is zero while <i>2>e q = v2. The velocity autocorrelation
function, <y(?) t>(0)> e q /<u2> e q = e~2*', is a single exponential just like for
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the Kramers-Klein equation. However, <t> 4 > e q = «y2>eq)2 rather than
<t)4>eq = 3«t>2>eq)2, which holds fora Maxwellian distribution of velocities.

We treat x = 0 as an absorbing point. Let S±(t\x) be the survival
probability of a particle initially at x [x>0] with velocity ±v. The dis-
tribution of first passage times to x = 0 for the particle initially at x [x > 0]
w i th  v e lo c i t y  ±v ,  d en o t ed  by  F±( t \ x ) ,  a r e  r e l a t ed  t o  t he  su rv iva l
probabilities via F±(t \ x)= — dS±(t \ x)/dt. The survival probabilities
satisfy the adjoint equation:

since (3/3x)t= —d/dx. The initial conditions are S±(t = 0 \ x) = 1 and the
boundary condition is:

since a particle initially at x > 0 is absorbed by the boundary at x = 0 only
when it is moving with a negative velocity. This is the adjoint of the Wang
and Uhlenbeck boundary condition for the probability density. The sur-
vival probability of a particle initially at x = 0 but moving with velocity + v
[i.e., 5 + (? |0)] is non zero and is to be determined. At first sight, the
boundary condition in Eq. (3) does not appear to be sufficient to find a
unique solution to the coupled pair of first order differential equation
(2a, 2b). As we show below, a unique solution can be found by imposing
the requirement that the survival probabilities must be finite as x -» oo, i.e.,
the generalized albedo problem.'31

Laplace transforming Eq. (2a)
find:

where we have used the initial conditions S±(Q \ x) = 1 and defined M by:

we
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The ^-dependent eigenvalues At and A2 and corresponding eigenvectors u,
and u2 of M are:

and

The general solution of Eq. (4) is therefore:

where A and B are unknown constants. For the survival probabilities to
be bounded as x -> oo we must set A = 0. The remaining constant B is
obtained using the boundary condition in Eq. (3) and we have:

Since F±(t \ x) = — dS±(t \ x)/dt, the Laplace transforms of the first passage
time distribution functions are:

The key relation we need to invert these Laplace transform is:(7)

where Jz? ' [ • • • ] denotes the inverse Laplace transform, ! ( , [ • • • ] is the
modified Bessel function of order zero and H( • • •) is the Heaviside step
function defined as H(x) = 0 for x < 0 and H(x) = 1 for x > 0. Differentiating
this with respect to a and using the convolution relation, we finally find:
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where I: [ • • • ] is the modified Bessel function of order one.
It is of interest to examine some special cases of these general expres-

sions. When k = 0, F+(t \x) = 0 as to be expected since a particle moving
with +v can never be absorbed. In this limit, F_(t \x) = d(t — x/v) so that
S _ ( t \x) = 1 — H(/ — x/v), i.e., the survival probability is one until time
/ = x/v and zero thereafter. The distribution of first passage times for a par-
ticle starting out at x = Q but moving with velocity +v, from Eq. ( l l a ) , is
F+(t \Q) = e~k'll[kt'\/t so that the corresponding survival probability is:

A particle starting out at x = 0 with a velocity +v can only be absorbed
at x = 0 if it changes its velocity to — v.

Let us examine the behavior of Eqs. ( l l a , l i b ) at long times. When
ty>x/v and kt»l, using the asymptotic expansions of Bessel functions,
Iol>] =Ii[/l - [ 2 n y ] - l / 2 e x p { y } for j;-+ oo, and y = k[t2-(x/v)2]1'2 =±
kt-(kx2)/(2v2t), we find:

where we have defined D = v2/(2k). Note that the reduced distribution
F ( t \ x ) = [ F + ( t \ x ) + F_(t\x)']/2 reaches zero at x= —v/2k and satisfies
the radiation boundary condition,



For this model, < F2>eq = (2n — 1) v2, and the velocity autocorrelation
function is e~2<r' for all n.

Let S,(t | x) be the survival probability of a particle initially at x with
velocity V,. When « = 1, for instance, 5 t(/ |jc) and S2(t \x) correspond to
S_(t\x) and S+(t\x) defined previously. The elements of the survival
probability vector satisfy the following equation,

The probability, peq(i), that at equilibrium the velocity is Vl is given by the
binomial distribution:

so that the above kinetic scheme
can be relabeled as,
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This defines the Milne lenght, l = D/x = v/(2k), for the diffusion limit of
the telegrapher's equation or two velocities process. When in addition
kx/v » 1, i.e., F+(t \ x) = F_(t \ x) for sufficiently long times, F(t x) is just
the first passage time distribution to an absorbing boundary for a freely
diffusing particle with diffusion coefficient D, i.e., the solution of the
Wang-Uhlenbeck problem in the diffusion limit. As a result of the above
slow [£~3/2] asymptotic decay of the first passage time distribution func-
tions, the mean first passage time is infinite for this problem.

Finally, we consider generalizations of the above model that corre-
sponds to more sophisticated velocity finite difference approximations of
the Kramers-Klein equation. Suppose that the velocity can fluctuate
among ±v, +3i',..., ±(2n— 1) v with dynamics described by the scheme:
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Eq. (18) leads to the first-order differential equation,

where C is an arbitrary constant which can be set to one. Since G(y) must
be a polynomial of degree 2« — 1 in y, we require that /? — a = 2i — In — 1,
with 1 ̂  / < In. From this condition, it turns out that the eigenvalues of the
matrix M are:

The general solution of this differential equation is

Introducing the generating function,

The eigenvalue problem, Mu = Au, is equivalent to solving the difference
equation:
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which, after Laplace transformation, is analogous to Eq. (4) but where M
is In x In matrix with elements:

otherwise
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Equation (25), with the Bt's given in Eq. (26), constitutes the formal solu-
tion in the Laplace space of the Wang-Uhlenbeck problem in the discrete
velocity space.

where u(0 are eigenvectors corresponding to the negative eigenvalues. The
Bt's can be determined from the n boundary conditions,

in which yv and y2 are defined in Eq. (21c) with A, given by Eq. (22).
Consequently, the method used above for n = 1 can be easily

generalized. The first passage time distribution vector can be written as:

where wj" represent elements of the eigenvector u(/) associated to the eigen-
value /I,-, i.e., u( l ) = (u\'\ u(2\..., «2«)T- These eigenvectors are given by:

in which A,<0 for 1 ̂ i^n and A,.>0 for n^i^In. The generating func-
tion corresponding to the eigenvalue A,:


